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Abstract 
Isaac Newton proposed hanging a bucket of water by a cord in the 
Principia. If the cord is twisted and the bucket is then released, it 
begins to spin and the surface of the water acquires a paraboloidal 
shape. In this paper, the parabolic profile as a function of the angle of 
rotation is derived, as well as the period of the torsional oscillations as 
a function of the initial parameters of the system. 

1. Introduction 
IF A VESSEL, hung by a long cord, is so often turned about that the cord is 
strongly twisted, then filled with water, and held at rest together with the 
water… [then] while the cord is untwisting itself… the vessel, by 
gradually communicating its motion to the water, will make it begin 
sensibly to revolve, and recede by little and little from the middle, and 
ascend to the sides of the vessel, forming itself into a concave figure (as I 
have experienced) and the swifter the motion becomes, the higher will the 
water rise ... This ascent of the water shows its endeavor to recede from 
the axis of its motion; and the true and absolute circular motion of the 
water … becomes known, and may be measured by this endeavor. [1] 

Newton’s bucket is well known to philosophers of science, who 
have pondered the metaphysics of why the liquid in a rotating container 
adopts a curved surface. Ernst Mach, for example, postulated that the 
parabolic shape must be due to the existence of matter in the universe,  
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specifically of the distant “fixed stars” relative to which the bucket rotates 
[2]. However, the simple physical questions are: How does the shape of 
the water surface vary as the cord supporting the bucket unwinds? What is 
the period of the torsional oscillations? 

2. Surface Profile From a Force Analysis 

Suppose water partly fills a right cylindrical bucket (of radius R) 
that is rotating about its vertical z axis of symmetry at angular speed ω. 
Make the key assumption (to be discussed later) that the liquid 
instantaneously follows the motion of the bucket. (The speed of the bucket 
is restricted to be less than some value ωmax that prevents both the 
spinning water from spilling over the top edge, and the bottom of the 
bucket from being exposed at the axis of rotation.) Denote the cylindrical 
coordinates of any point on the surface of the water as ( , , )r zφ  where the 
origin lies on the axis at the bottom of the bucket. The axes are fixed in the 
laboratory frame and do not rotate with the bucket. The angular speed of 
the water and bucket is /d dtω φ= . Two forces act on a bit of water at the 
surface. One is gravity vertically downward. The other can be alternatively 
described as being due to the pressure from the surrounding water [3], as a 
buoyant force [4], or simply as a normal force [5]. The resultant of the two 
forces is a radially inward centripetal force [6] in the inertial laboratory 
frame, or equivalently a radially outward centrifugal force [7] in the 
noninertial frame of the bucket. By considering the vertical and horizontal 
components of Newton’s second law [8], one finds that the water surface 
adopts the paraboloidal shape 

 
2 2

0 2
rz z
g

ω= +  (1) 

where 29.80 m/sg =  is Earth’s gravitational field strength and z0 is the 
height of the water at the center of the spinning bucket. (Another way to 
derive this result is to note that the surface of the water must be an 
equipotential relative to the sum of the gravitational and centrifugal 
potential energies [9].) The value of z0 can be related to the total mass m 
of water in the bucket, 

 
0

2
R

m rzdrπρ= ∫  (2) 
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where 31000 kg/mρ =  is the density of water. Substituting Eq. (1) into (2) 
and performing the integral gives 

 
2 2

2
0 4

Rm R z
g

ωπρ
⎛ ⎞

= +⎜ ⎟⎜ ⎟⎝ ⎠
. (3) 

Denote the height of the water in the bucket when it is stationary by h. 
Then putting 0ω =  in Eq. (3) implies 

 2m R hπρ= , (4) 

so that Eq. (3) can be rearranged as 

 
2 2

0 4
Rz h
g

ω= − . (5) 

Substituting this result into Eq. (1) leads to the normalized expression 

 
2 2

2 2
max

21 1z r
h R

ω
ω

⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎝ ⎠

 (6) 

where 1
max 2R ghω −≡ . Note that 0z =  at 0r =  when maxω ω= , in 

agreement with the parenthetical discussion of ωmax above Eq. (1). Also 
note that / 2z h =  at r R=  when maxω ω= , which implies that the bucket 
must initially be filled no more than halfway with water, to prevent liquid 
from spilling out at the maximum angular speed. Equation (6) is plotted in 
Figure 1 for three different values of max/ω ω . For any angular speed, 
z h=  when 1/2/ 2r R −= . As the bucket spins faster, the water level drops 
in the center and rises up near the walls, as Newton noted. 
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Figure 1. Profiles of the water surface for three different angular speeds. 
 

3. Angular Speed From an Energy Analysis 

The moment of inertia of the water in the spinning bucket is 

 
2

2
0 2

max0

2 1
3

R
I r rzdr I ωπρ

ω

⎛ ⎞
= = +⎜ ⎟⎜ ⎟⎝ ⎠
∫  (7) 

using Eqs. (4) and (6), where the moment of inertia of the water when the 
bucket is at rest is 2

0 / 2I mR= . The moment of inertia increases as water 
is flung farther away from the axis of rotation with increasing angular 
speed, up to a maximum value of 04 / 3I . 

Just as the elastic potential energy of a spring with a particle 
attached to its end is 2 / 2kx  where x is the translational displacement of 
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the particle and k is the spring constant, so the torsional potential energy of 
the rope with the bucket attached to its end is 

 21
T 2U cφ=  (8) 

where φ is the angular displacement of the bucket and c is the torsional 
constant of the rope. The gravitational potential energy of the water 
relative to the bottom of the bucket is 

 
22 2 2

2
G 2 2 2

max max0 0 0

22 1
R z R rU rdzdrgz g rh dr

R
ω ωπρ πρ
ω ω

⎛ ⎞
= = − +⎜ ⎟⎜ ⎟⎝ ⎠
∫ ∫ ∫  (9) 

using Eq. (6). With the help of Eq. (4), the integral simplifies to 

 
4

G 4
max

1
2 3
mghU ω

ω
⎛ ⎞

= +⎜ ⎟⎜ ⎟⎝ ⎠
 (10) 

which reduces to the expected result if 0ω = . Note the seemingly 
paradoxical fact that even though the water is cylindrically symmetric and 
UG is therefore independent of φ as measured in the rotating frame of the 
bucket, UG is a function of ω which in turn depends on the angle φ as 
measured in the inertial frame of the laboratory. The resolution of this 
paradox is that the angular acceleration is presumed to be small enough 
that z can be taken to be independent of φ over any 2π range, and yet the 
height of the water at a given radius varies over the course of many 
revolutions of the bucket. As noted in Ref. [7], water in a 9-cm-diameter 
Lucite cylinder spinning at a constant rate of 300 rpm takes about 1 
minute to attain its equilibrium paraboloidal shape, indicating that the 
coupling between z and φ is weak but nonzero. 

Assume that the mass of the bucket is negligible compared to that 
of the water. Then the total potential energy U of the system is the sum of 
UT and UG. Suppose that the rope is twisted through an initial angle φ0 and 
the bucket is released from rest, so that the initial kinetic energy is i 0K =  
and the initial potential energy is 

 21 1
i 02 2U c mghφ= + . (11) 

When the rope has untwisted to some angle φ so that the bucket is rotating 
at angular speed ω, the kinetic energy is 
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 2 2 40
f 0 2

max

1 1
2 2 6

IK I Iω ω ω
ω

= = +  (12) 

according to Eq. (7), and the potential energy is 

 2 4
f 4

max

1 1
2 2 6

mghU c mghφ ω
ω

= + + . (13) 

Conservation of energy now implies that 

 ( )
2

2 2 2 40 max
0 0 4

max3
I mghc I ωφ φ ω ω

ω
+− = + . (14) 

Noting that 2
0 max 2I mghω = , we can rearrange Eq. (14) into the 

normalized form 

 
24 2 2
0

4 2 2
max max 0

2 1c
mgh
φω ω φ

ω ω φ
⎛ ⎞

+ = −⎜ ⎟⎜ ⎟⎝ ⎠
. (15) 

Solving this biquadratic equation gives 

 
2 2

2 2
max 0

1 1 1ω φβ
ω φ

⎛ ⎞
= + − −⎜ ⎟⎜ ⎟⎝ ⎠

 (16) 

where 

 
2
0c

mgh
φβ ≡ . (17) 

The dimensionless constant β is the ratio of the initial torsional potential 
energy 2

0 / 2cφ  to the initial gravitational potential energy / 2mgh . The 
square root of Eq. (16) is plotted in Figure 2 for three different values of β. 
Note that the maximum value of β is 3 if ω is not to exceed ωmax when the 
cord has fully unwound at 0φ = . Furthermore, even at the midpoint of the 
bucket’s oscillations when 0φ = , increasing β from 1 to 3 increases ω  by 
only 55%. 
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Figure 2. Angular speed of the water as a function of the fractional unwinding of the 
rope for three different initial numbers of twists of the bucket. 

 

4. Period of Torsional Oscillations 

Take the square root of Eq. (16), substitute /d dtω φ= , and 
separate variables. Then integrate over a quarter period / 4T  as the bucket 
passes through its equilibrium position and the cord fully winds back up, 
to get 

 
0

1/2
/42

max2
00 0

1 1 1
T

d dt
φ φβ φ ω

φ

−⎡ ⎤⎛ ⎞
⎢ ⎥+ − − =⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ . (18) 

Multiply both sides of this equation by 1 1/2
0φ β− . Then make the change of 

variable in the left-hand integral to θ where 0sin /θ φ φ≡ . Perform the 
right-hand integral and substitute Eq. (17) into it to eliminate β. Using 
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max 02 /mgh Iω = , Eq. (18) gives the period of the bucket’s torsional 
oscillation as 

 

1/2
/2 2

0
2

0

8 cos

1 cos 1

IT d
c

π β θ θ
β θ

⎡ ⎤
⎢ ⎥=
⎢ ⎥+ −⎣ ⎦

∫ . (19) 

The square root in the denominator inside the square brackets is 
approximately 21 0.5 cosβ θ+  in the limit as 0β → . Denoting the period 
as T0 in this small-angular-amplitude limit, one immediately obtains 

 0
0 2 IT

c
π=  (20) 

as expected, since 0I I→  for small ω according to Eq. (7). The integral in 
Eq. (19) can be numerically evaluated for nonzero β, but it is found to 
only increase slowly with β. Even at the maximum value of 3β = , the 
period of oscillation is merely 12% larger than T0. 

In any case, Eq. (16) gives an exact solution in phase space, 
whereby quantities are expressed in terms of the twist angle φ rather than 
in terms of the elapsed time t. For example, substituting Eq. (16) into (6) 
gives the height of the water at any point in the bucket as a function of the 
angle that the cord has unwound. In particular, at the walls of the bucket 
where r R= , let Z denote the height of the water. Then the fractional rise 
in the height of the water at the walls above the stationary level is 

 
2

2
0

1 1 1Z h
h

φβ
φ

⎛ ⎞− = + − −⎜ ⎟⎜ ⎟⎝ ⎠
 (21) 

which is equal to the normalized square of the angular speed of the bucket, 
according to Eq. (16). As already mentioned, 2Z h=  when 3β =  and 

0φ = . 

5. Closing Remarks 

Why is the period 12% longer for large-angle oscillations of this 
torsional pendulum than it is for small amplitudes? The reason is not the 
same as for a simple pendulum. For a simple pendulum, the period 
increases because the approximation sinθ θ≈  breaks down at large 
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angles. Instead, the reason here is the increase in the moment of inertia of 
the water, in accordance with Eq. (7). In particular, if we froze the water, 
then the period would be independent of amplitude, just as it is for a mass 
on a Hookean spring. 

Finally, let’s return to the key assumption underlying the analysis. 
The viscosity of the water must be high at the walls and bottom of the 
bucket if the fluid is to instantaneously adjust to the motion of the solid 
container. At the same time, the viscosity needs to be low within the bulk 
of the fluid to prevent differences in angular speed between one region of 
the water and another. Fortunately, simulations for the spin of an 
incompressible fluid in a cylindrical container suggest that there are viscid 
boundary layers in the water near the solid surfaces of the cylinder, 
accompanied by an inner inviscid core [10]. The situation is similar to 
laminar flow over an airplane wing, with drag motion close to the wing 
and potential flow far away from it. 
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